一区二区日本_久久久久久久国产精品_无码国模国产在线观看_久久99深爱久久99精品_亚洲一区二区三区四区五区午夜_日本在线观看一区二区

Skip to content

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

License

Notifications You must be signed in to change notification settings

google-research-datasets/wit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

?

History

65 Commits
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Repository files navigation

WIT : Wikipedia-based Image Text Dataset

Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal machine learning models.

Key Advantages

A few unique advantages of WIT:

  • The largest multimodal dataset (publicly available at the time of this writing) by the number of image-text examples.
  • A massively multilingual dataset (first of its kind) with coverage for 108 languages.
  • First image-text dataset with page level metadata and contextual information
  • A collection of diverse set of concepts and real world entities.
  • Brings forth challenging real-world test sets.

You can learn more about WIT Dataset from our arXiv paper.

Latest Updates

2021 April: Happy to share the good news that our paper got accepted at SIGIR Conference. From ACM site, you can find our paper, slides and presentation.

2021 September: WIT Image-Text Competition is live on Kaggle. Our collaborators from Wikimedia Research blogged about this and they have made available the raw pixels and resnet50 embeddings for the images in this set. Here is our Google AI blog post.

2022 April: We are happy to share that the WIT paper and dataset was awarded the WikiMedia Foundation's Research Award of the Year (tweet 1, tweet 2). We are deeply honored and thank you for the recognition.

2022 May: We have released the WIT validation set and test set. Please see the data page for download links.

2022 Oct: Authoring Tools for Multimedia Content proposal accepted at TREC 2023

2023 Apr: AToMiC accepted at SIGIR 2023.

2023 Apr: WikiWeb2M Dataset released.

2023 May: Accepted submissions at WikiWorkshop 2023.

  • WikiWeb2M: A Page-Level Multimodal Wikipedia Dataset (pdf, arXiv)
  • Building Authoring Tools for Multimedia Content with Human-in-the-loop Relevance Annotations (pdf)
  • Characterizing Image Accessibility on Wikipedia across Languages (pdf)

WIT Example

Wikipedia Page

For example, let's take the Wikipedia page for Half Dome, Yosemite in CA.

WIT Wikipedia Half Dome Image

From the Wikipedia page for Half Dome : Photo by DAVID ILIFF. License: CC BY-SA 3.0

Wikipedia Page with Annotations of what we can extract

From this page, we highlight the various key pieces of data that we can extract - images, their respective text snippets and some contextual metadata.

WIT Half Dome Page with Annotations

By extracting and filtering these carefully, we get a clean, high quality image-text example that can be used in multimodal modeling.

Motivation

Multimodal visio-linguistic models rely on a rich dataset to help them learn to model the relationship between images and texts. Having large image-text datasets can significantly improve performance, as shown by recent works. Furthermore the lack of language coverage in existing datasets (which are mostly only in English) also impedes research in the multilingual multimodal space – we consider this a lost opportunity given the potential shown in leveraging images (as a language-agnostic medium) to help improve our multilingual textual understanding.

To address these challenges and advance research on multilingual, multimodal learning we created the Wikipedia-based Image Text (WIT) Dataset. WIT is created by extracting multiple different texts associated with an image (e.g., as shown in the above image) from Wikipedia articles and Wikimedia image links. This was accompanied by rigorous filtering to only retain high quality image-text sets.

The resulting dataset contains over 37.6 million image-text sets – making WIT the largest multimodal dataset (publicly available at the time of this writing) with unparalleled multilingual coverage – with 12K+ examples in each of 108 languages (53 languages have 100K+ image-text pairs).

WIT: Dataset Numbers

Type Train Val Test Total / Unique
Rows / Tuples 37.13M 261.8K 210.7K 37.6M
Unique Images 11.4M 58K 57K 11.5M
Ref. Text 16.9M 150K 104K 17.2M / 16.7M
Attr. Text 34.8M 193K 200K 35.2M / 10.9M
Alt Text 5.3M 29K 29K 5.4M / 5.3M
Context Texts - - - 119.8M

WIT: Image-Text Stats by Language

Image-Text # Lang Uniq. Images # Lang
total > 1M 9 images > 1M 6
total > 500K 10 images > 500K 12
total > 100K 36 images > 100K 35
total > 50K 15 images > 50K 17
total > 14K 38 images > 13K 38

Get WIT

We believe that such a powerful diverse dataset will aid researchers in building better multimodal multilingual models and in identifying better learning and representation techniques leading to improvement of Machine Learning models in real-world tasks over visio-linguistic data.

WIT Dataset is now available for download. Please check the data page.

Citing WIT

If you use the WIT dataset, you can cite our work as follows.

@inproceedings{10.1145/3404835.3463257,
author = {Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},
title = {WIT: Wikipedia-Based Image Text Dataset for Multimodal Multilingual Machine Learning},
year = {2021},
isbn = {9781450380379},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3404835.3463257},
doi = {10.1145/3404835.3463257},
booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2443–2449},
numpages = {7},
keywords = {dataset, multimodal, machine learning, wikipedia, multilingual, image-text retrieval, neural networks},
location = {Virtual Event, Canada},
series = {SIGIR '21}
}

License

This data is available under the Creative Commons Attribution-ShareAlike 3.0 Unported license.

Projects using WIT

For information regarding MURAL (Multimodal, Multitask Retrieval Across Languages) paper accepted at EMNLP 2021.

Contact

For any questions, please contact wit-dataset@google.com. To any questions to the first author, Krishna, please reach via their personal page krishna2.com for contact informaiton.

If WIT dataset is useful to you, please do write to us about it. Be it a blog post, a research project or a paper, we are delighted to learn about it.

About

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Contributors 3

  •  
  •  
  •  
主站蜘蛛池模板: 欧美激情一区 | 九九九色| 99精品国自产在线 | 中文字幕一级毛片视频 | 亚洲日韩中文字幕 | 国产极品粉嫩美女呻吟在线看人 | 国产精品成人69xxx免费视频 | 激情六月丁香 | 亚洲成人毛片 | 国产在线a| 天天操天天干天天曰 | 日本黄色免费视频 | 日韩精品一区二区三区视频播放 | 中文字幕 欧美 日韩 | 日韩午夜影院 | 国产精品极品美女在线观看免费 | 自拍视频网 | 国产精品久久国产精品久久 | 日韩毛片中文字幕 | 亚洲成人精品 | 精品国产亚洲一区二区三区大结局 | 观看av | 免费观看成人av | 欧美精品福利 | 国产成人免费在线 | 国产精品欧美精品日韩精品 | 91色网站 | 欧美日韩一区二区三区四区五区 | 亚洲视频在线观看 | 欧美日韩久久精品 | 一级女毛片 | 国产麻豆一区二区三区 | 精品亚洲一区二区三区 | 亚洲精品精品 | 精品自拍视频在线观看 | 国产精品综合色区在线观看 | 亚洲免费视频播放 | 毛片一区二区 | 涩爱av一区二区三区 | 91一区二区三区在线观看 | 久久久成人一区二区免费影院 |