一区二区日本_久久久久久久国产精品_无码国模国产在线观看_久久99深爱久久99精品_亚洲一区二区三区四区五区午夜_日本在线观看一区二区

Skip to content

FaceAdapter/Face-Adapter

Repository files navigation

Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

arXiv GitHub

Introduction

Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

Release

  • [2024/5/25] ?? We release the gradio demo.
  • [2024/5/24] ?? We release the code and models.

Installation

# Torch >= 2.0 recommended for acceleration without xformers
pip install accelerate diffusers==0.26.0 insightface onnxruntime

Download Models

You can download models of FaceAdapter directly from here or download using python script:

# Download all files 
from huggingface_hub import snapshot_download
snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")

# If you want to download one specific file
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

To run the demo, you should also download the pre-trained SD models below:

? Quick Inference

SD_1.5

python infer.py 

You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

?? FaceAdapter can be seamlessly plugged into community models:

python infer.py --base_model "frankjoshua/toonyou_beta6"

Disclaimer

This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

Citation

If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

@article{han2024face,
  title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
  author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
  journal={arXiv preprint arXiv:2405.12970},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

主站蜘蛛池模板: 性久久久久久 | 91麻豆精品国产91久久久久久久久 | 久草视频观看 | 黄色片免费网站 | 欧美日本国产 | 久久精品一区二区三区四区五区 | 国产激情综合五月久久 | 毛片在线观看视频 | 欧美一区二区三区在线播放 | 国产一区欧美 | 亚洲第一区视频 | 免费在线观看毛片 | 久久av中文字幕 | 亚洲精品久久久 | 超碰免费在线观看 | 一区二区三区视频在线播放 | 久久免费国产视频 | 国产欧美一区二区精品性色超碰 | 日本在线免费视频 | 999久久久久久久久6666 | 午夜伦理视频 | 亚洲精品成人网 | 精品一区二区三区中文字幕 | 中文字幕手机在线观看 | 中文字幕av一区二区三区谷原希美 | 一级片观看 | 亚洲天堂免费视频 | 国产无遮挡又黄又爽免费网站 | 久久艹国产 | 在线视频a| 99精品色 | 天天网综合 | 无套内谢的新婚少妇国语播放 | 成人在线不卡 | 法国极品成人h版 | 黄色天天影视 | 久久久夜色精品亚洲 | 91爱爱网 | 好吊妞这里只有精品 | 成人深夜福利 | 亚洲永久免费 |