一区二区日本_久久久久久久国产精品_无码国模国产在线观看_久久99深爱久久99精品_亚洲一区二区三区四区五区午夜_日本在线观看一区二区

Skip to content

FaceAdapter/Face-Adapter

Repository files navigation

Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

arXiv GitHub

Introduction

Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

Release

  • [2024/5/25] ?? We release the gradio demo.
  • [2024/5/24] ?? We release the code and models.

Installation

# Torch >= 2.0 recommended for acceleration without xformers
pip install accelerate diffusers==0.26.0 insightface onnxruntime

Download Models

You can download models of FaceAdapter directly from here or download using python script:

# Download all files 
from huggingface_hub import snapshot_download
snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")

# If you want to download one specific file
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

To run the demo, you should also download the pre-trained SD models below:

? Quick Inference

SD_1.5

python infer.py 

You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

?? FaceAdapter can be seamlessly plugged into community models:

python infer.py --base_model "frankjoshua/toonyou_beta6"

Disclaimer

This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

Citation

If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

@article{han2024face,
  title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
  author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
  journal={arXiv preprint arXiv:2405.12970},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

主站蜘蛛池模板: 亚洲精品一区二区三区中文字幕 | 亚洲视频一区在线 | 毛片网在线观看 | 国产午夜精品视频 | 日韩欧美大片在线观看 | 久久国产精品无码网站 | 一区二区三区四区视频 | 亚洲欧美综合网 | 韩日精品一区 | 91就要激情 | 青青草一区二区三区 | av网站在线免费观看 | 成人一级片在线观看 | 欧美久久久久久久久 | 国产视频日韩 | 亚洲福利在线视频 | 国产一区二区三区高清 | 自拍中文字幕 | 99re6热在线精品视频播放 | 超碰在线人人 | av网站在线播放 | 一区二区在线免费播放 | 蜜桃免费一区二区三区 | 在线一区观看 | 国产高清在线精品一区二区三区 | 日本精品国产 | 成人影视网址 | 亚洲一区自拍 | 国产高清免费视频 | 在线天堂免费中文字幕视频 | 久久久tv| 黄色大片视频 | av电影一区| 国产精品久久久久久久7电影 | 久久99网 | 亚洲日本免费 | 国产高清久久 | 精品国产一区二区国模嫣然 | 国产日韩欧美在线观看 | 欧美99 | 欧美国产日本一区 |